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I. SU4ARY

This report presents a study of the nature of the unsteady

forces in the field of a propeller rotating in the vicinity of an

appendage. The propeller is assumed to be one of a high aspect ratio

while the appendage although of finite width is assumed to be infinitely

long and thus the problem is reduced to a study of the two-dimensional

flow field around two flat plates. An essential feature of the analysis

is that the mutual interference effects of propeller blade and appendage

ere taken into account. Two approaches are formulated. The rigorous

method leads to a set of two simultaneous integral equations which are

reduced to a single integral equation involving elliptic integrals.

The simplified method employs the technique of substitution vortices

which yields explicit analytic expressions for the quasi-state, apparent-

mass and wake forces for both the propeller and appendage. Graphs and

tables give the magnitude and variation of the propeller and appendage

forces as functions of tip clearance, distance and relative size of

appendage and propeller.
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NOWENCLATURE

a -Initial position of propeller

ao1  7

a2  Y+'

a- Yo-i(x0+j)

a 2  -Y 0-i(x0-j)

yo -i(x -x)
al13  -

.7

a1 4  - c____

a15  - cix-'

b ii(x0 -x)

bi- i(x0+1)

c -Chord of propeller blade

9 i(x 0 -xv)
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21 allv) (al2- 1)
k3.

(all-W)(al
2 -v)

a -i(x -XI)
ko &2 - 1 (xo-X'r)

k (l-allp') (al3 -al2)
kI  - la3v) (1-al4v)

S(l-) (all'-alg) (l+a13)k2  - (al3V(.a3
3-v - )( +813

k3 I 4 ," (al4.) (l-al 4 v)

k (l'allv) (al-5)
• 4  (l-a13v) (I-alSv)

k (1-v) (a1,al5) (l+al,)
k5  (l-51v a(1+41)

- Half-chord of appendage

q - Coefficient in formula for r
V

r -

t, to  -Time

u,v - Velocity components

wo - Complex potential

xly- Rectangular coordinates

x'- Variable along appendage

x a - x location of appendage substitution vortex

xo - x distance of propeller from center of appendage

Xp x location of propeller substitution vortex
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y' - Variable along propeller blade

Y& - y location of appendage substitution vortex

yO - y distance of appendage from center of propeller

yp - y location of propeller substitution vortex

C lex coordinate

+42 + i
A ' 1.P

iJ~~*i*Z) + i( a )
a a pa

0 Yoac) + '("pa)

C - Correction term for Appendage Wake Force

C- Vorticity strength for concentrated, vortex

D - Corzction term for Propeller Wake Force

F - Force per unit span

K(k. - Complete elliptic integral of lst kind

F - (yo- 0M,

R . Ut

Ut0¢
Ro  - -o

S . Vt
c

Vt
o

c
7
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Unperturbed propeller thrust, ,*rcUV

Ftree Stream Velocity

' eloity of' propeller blade

Angl&e 6f attack,

Az i cL. ~vY dtitribution along x

CL

A~ Qua3i.-steady vorticity on appendage

V-ti~city :.n &-p enage due to -yiy

. j.,, - v -rxicL t dpendage due to y.Y

QuaA3-eac'y vorticity on propeller

rc...>~r zeller due toyoa(x)

a ~~c~:yn pr.-peller at infinity

t auE t wak e

I+ lL' +a 1 al 2 . 2

ii-£2 11 12
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- Time variable

Vt

P - Circulation

rpi = Circulation on propeller due to roa

r P 2 - Circulation on propeller at infinity

1T(v 2 ,k) - Complete elliptic integral of the 3rd kind

Subscripts

a - Appendage

i - Induced

o - Quasi-steady state

m - Maximum or Minimum

p - Propeller

1 - Apparent-mass effect

2 - Wake effect

Superscripts

- pertains to quantities normalized by

-yo

YO " L- etc.

(I) Unit
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II INTRODUCTION

The purpose of this study is to evaluate the effects due

to a propeller rotating in the vicinity of an appendage both subject

to a uniform stream parallel to the appendage, as shown in Fig. 1.

10

Figure i.

Propeller Appendage System

Specifically it is desired to analyze the nature and magnitude of the

forces acting on both the propeller and appendage. These forces due to

the rotation of the propeller will be time dependent functions and

as such will induce vibrations either by direct excitation of the

appendage or by the transmission of forces via the propeller

shaft The knowledge of the relation between these forces and

TECHNICAL RESEARCH GROUP
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such design parameters aL tip clearnace, relative size of appendage

and propeller and the location and number of blades may provide a

means for new and more effective design procedures.

Of the early work dealing with forces induced by rotating

propellers are the papers by Lewis 1,2 who by use of models and

electrical analogy charted the pressure field induced on a wall

parallel to the propeller axis. However the results while setting

down the nature of the vibratory force3 do not correlate these with

the various design parameters inherent in propeller-appendage assem-

blies. The most recent work on the subject is that of Breslin 3 , who

solved the problem analytically by representing the propeller blade

by a single concentrated vortex sweeping by a moving plate. The

present work follows Breslin's approach but differs from it and

extends it in several important respects, Instead of a concentrated

single vortex the blade is here represented by a chord-wise vorticity

distribution which in addition to yielding a more correct value for

the forces on the appendage, enables us also to calculate the forces

on the propeller which was impossible to do in Breslin's case. The

second important difference is that we have here included the mutual

interference effects of propeller blade and appendage; for as the

propeller moves through the velocity field of the appendage these

velocities modify and are in turn themselves modified by the velocity

potential of the travelling propeller.

Two approaches will be formulated, one rigorous and a

simplified method. The rigorous analysis leads to a set of two

simultaneous integral equations which by proper inversion and

TECHNICAL RESEARCH GROUP
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integration are eventually reduced to a single non-homogeneous integral

equation. This equation, given in terms of elliptic integrals with

complex moduli and parameters, can be solved only by numerical methods

and represents a formidable computational task. The simplified method

is the Method of Substitution Vortices which leads directly to explicit

analytic expressions for the vorticities and forces involved. These

expressions are then evaluated for a number of pertinent parameters

for both the propeller and appendage. A discussion of these results

and the main conclusions are given at the end of the report.

The analysis is based on the usual assumptions of potential

theory, namely that the flow is incompressible and irrotational and

on the assumption that the velocity V >> U so that the flow is nearly

parallel for both the appendage and the propeller. The propeller is

treated as one of a very high aspect ratio so that its three-dimensional

configuration can be replaced by a representative blade cross section

of finite chord. The appendage too though infinitely long has a

finite width in the plane of the propeller chord. The problem thus

is essentially reduced to an analysis of the unsteady flow field

round two flat plates.

TECHNICAL RESEARCH GROUP
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III - GENERAL FORCE EQUATIONS

The basic relations for circulation and lift on a

flat plate are well known from elementary aerodynamics. The

infinite-span, infinitely-thin plate of chord 2a is represented

by an unknown chordwise vorticity distribution 1 (x) which

gives the velocity field around the plate By imposing the

conditions of zero normal velocity along the plate and the

Kutta condition of zero velocity at the trailing edge the velocity

u(x) along the plate is obtained, Used in Bernoulli's equation

these velocities will provide the pressure distribution on the

plate and by integration these pressures will yield the total

lift.

U

F

Figure 2.

Vorticity, Circukation and Lift on a Flat Plate
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When the plate is subject to an unsteady free-stream velocity,

a varying angle of attack, or is otherwise affected by unsteady

phenomena, the vorticity -o, the ri i ' .nd "'w

resultant forces become time dependent functions. Under these

conditions vonKarman and Sears 4 have shown that the total force

on the plate is made up of three parts. These are-

1. Fo - Quasi-steady Force This is the force that

would have resulted from a steady state case in which all para-

meters are equal to the instantaneous values of the unsteady

motion. The expression for this force is

Fo m pU ro  (3-1)

2. F1 - Apparent-Mass Force. This is the inertia

force on the plate due to the acceleration of the mass of fluid

around the plate. It is given by
a

F1  "P x-ya X~o(x,t)dx (3-2)

3. F2 - Wake Force, Due to the variation of yo(X,t)

with time the foil will shed vortices behind it giving rise to a

vorticity distribution -y(r,t) in the wake, With respect to the

coordinate axes of Figure 3 this y(C,t) will be a function of

both t and although in space it would not be a function of

time. This new vorticity distribution will give rise to a

normal velocity component on the foil which must be supressed by

an additional vorticity Y2(x,t) on the foil.
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I t

" lit

Figure 3.

Wake Vorticity Due to I. "  Girulation

It is shown in Section VT that the circulation in-

duced on a plate 2a by a single vortex at z is given by

C
0 " (Re -1)

For the case of a single vortex located at y-O this becomes

C

r"(x,o) .o (Re - 1)

For a vorticity distribution y( ,t) along the wake we thus have
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T2 = a Y (-) d) (3-3)

where -"a R - t and r 2 is the additional circulation on

the plate due to the wake vorticity.

We now have three circulations to consider; two about

the foil given by r7 and r2; and one in the wake, r, caused by

the unsteady motion of the foil. By Kelvin's theorem the sum

of these three circulations must at any time be zero. We thus

have

r + r + r = o
o 2

or

1+R 1+R
*Ot' a f -((T, t) ( 1) CC +a f Y(,t)dZ 0

which yields

I -IR - 'r0 tM
j )(,t) L = c3-4)

The above is an integral equation in -y( , t) which must be

solved for the particular function 1o(t) given by (2-11).

The force on the foil due to the additional circula-

tion r2 can be shown to be given by

lfR
F2  (Ua J Y( ,t) (3-5)21 /72.

The total force on the foil is then

F = F + FI + F 2  (3-6)

TECHNICAL RESEARCH GROUP
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IV. FORCES ON A SINGLE FOIL

In this section the vorticity distribution, velocity

potential and the forces arising from the wotU-,n o-i

sin~gie foil in a perfect fluid will be set down to serve as a

startinr, point for the treatment of the more complex propeller-

&-.,pendage problem. The results derived here will also be needed

later on in the -ext The elementary model considered is that

-. 'jSiMpie flat Pla[re moving with a velocity U at some attack

ar gie a a* shown in Figure 4,. In this sketch we have the

coordinate axes fixed with respect to the plate and we let the

-jrream flow past the foil with a velocity Ue iQ

CoK

Figure 4,

Fiat. P-late in Uniform Stream
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The complex potential for a simple concentrated

vortex of strength C. located as z - zo is

w - Co tn(z-z o)

and for the uniform stream U

w - - Ueiaz

From the above, representing the flat plate by a

distributed vorticity yo(x), we have

i a

w ueiaz + i -.a 'o(x')I(z-x')dx' (4-1)

From (4-1) the tatal -,oiapie). ,clocity £i the,,

dw Uei+ a yo(x')dx'TZ" -a --x"

Since - - u + iv we obtain for the velocity components parallel

and normal to the foil

u- Ucos a - i- f (x')2+y (4-2)
r -a (x-x,)2+y7

v - Usin a + fa "yo(x') (x-x')
Ui + -a (x-x , +y-- dx (4-3)

The condition of zero normal flow along the plate

requires that

v - 0 at y - 0 -a x < a

and thus
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-- a y0(x)dx' . 2 Usin a (4-4)

r -a x-x V

This represents an integral equation in yo(x) and its

solution can be obtained5from the following general inversion

formula, If

_ 2 (s)ds v((46)

r a s-Z(46
a1

then together with the Kutta condition v(a2) = 0, we have

1a V2--s is z ds (4-7,r -- I ,s-s s-

For the case of equ (4-4) we thus have

a
2U sin cza 'jT dx'

h+x -7x -T -
0 'Tr !-T+X a iX KX

Since

a
~fiTdx' (48

,a

we have

yo(X) - 2U sin a x k4



For non-steady flow the right-hand side ot eq *"

is given by an arbitrary function of space and time ,

Hence the vorticity distribution along the foil will aiso

a function of time and the inversion integral then becI,-

a

-XI a- xJ , WfaV ~ .'I''Yo 7 a~~x -aIV- xT RT_

The total circulation around the foil is then

a
ro(t) o f I(t)dx

-a

As seen from the above simple example, thi.

in arriving at an expression for the aerodynamic foi,

represent the foils by some vorticity distribution y(,.'

into account all neighboring velocity potentials. Th-

applying the proper boundary conditions the unknown v,,

distributions can in principle be obtained from the o

relations. These procedures will now be applied to tt

on hand.
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V. RIGOROUS ANALYSIS OF PROPELLER-APPENDAGE SYSTEM

We are concerned here with the unsteady potential

generated by a propeller rotating in the vicinity of a moving

plane or appendage, as shown schematically in Fig. 1. The

horizontal distance x0 of the blade from the appendage is a

fixed quantity which can be either negative or positive while

the vertical distance yo is a variable. Thus the velocities

and forces generated on both the appendage and propeller will

be time dependent functions, A crucial element of the problem

is that there is mutual interference between propeller and

appendage. In addition, due to the unsteady circulation,

wakes will be generated behind both propeller and appendage.

Mathematically the system can be represented by two

flat plates at right angles to and at a continuously vaiing

distance from each other, as shown in Fig, 5, We shall use

xc -

I

U

Figure 5.

Schematic Diagram of Propeller Appendage System
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the following notation for the various vorticities involved:

7 (Y) - vorticity distribution on propeller

at infinity

ypi(y ) - vorticity distribution on propeller due

to appendage interference

Yop(Y ) - quasi-steady vorticity on propeller

Yoa(X) - vorticity distribution on appendage due

to -pi(y)

is (x) - vorticity distribution on appendage due^oa

to p-Y (y)

^oa (x) - quasi-steady vorticity on appendage.

With the coordinate system fixed in the center of the appendage and

the main flow parallel to x, i.e. a - 0, we have from equ. (4-1)

- -Uz + - 'Yoa(x'l)n(zz')dx' + 7 f 'op(Y')In(z-xo-iy')dy'
"I 1

(5-1)

The complex velocity potential is by differentiating (5-1).

dw 0 + i v(x')dx' a2'.(yI)dI

-* aI

or after rationalizing the denominators

TECHNICAL RESEARCH GROUP
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dWo id- " - rU + - o (X -x' ) + dx'

fa2  ( (x-x )-i(y-y) ]+ 0o(Y') ("%z(y) dy,

a1 copoen veoiisaetu

The component velocities are thus

u - U - y "Yoa(x')dx' + 2 o(Y (5-2a)
S(XXo) z+(yy,) (5-2a)
Ia 1 0

1 Yoa(X)(x-x')dx' a2  (x-xo)dy'{ : (xx,) yz + J 7op (y') -) 2  (5-2b)V- +I a, (X'Xo) 2+(Y'Y '

The boundary conditions to be satisfied are

I) On appendage: v-0 on y-O - e x

2) On propeller: u-0 on x-xo yo - c y yo +

Thus

'Yoa 00 0(5-3 a)y0 7o( x')dx' /2 7o(Y')(x-xo)dY'l
x'-x I1 (X-xo) £+(y,

U ff 7oa(X')dx' :+ a 2op (y')dy' (5-3b)
(X.X) z  + 5-3b

- a1

Since yop(y') - yp(y') + ypi(Y') we can rewrite the last integrals

of the above two equations as follows:

TECHNICAL RESEARCH GROUP
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7°(Y')dY' a

ea2 vlv f y' ~ -v, (y) dy'
(X-xo ) fa 0 (x-X / Jx (Y)1Xx~ I (x'x°)+()

+ 2 -P'(Y"I)dY '

Ja (XXo )yZ+(YL)z

2 Y7op(y')dY 1 2 Ypi(y')dy' + 1 /2 p(y)dy'
y-y'. y-y' 7- y-'-y

al 1 I

The last integral is of the form given in (4-4) where Usin a represents

the cross flow, in our case merely U. Thus

1 0 2 "/p0 (Y ') dy' (54y~y, - U(5-4)

Ja1aI

Hence in Equ. (5-3b) the term U will be cancelled by the yp (y')

portion of the second right hand integral. Furthermore, from

Equ. (4-9) the value of y (y') satisfying (5-4) is

7p+(Y) - 2 U y (5-5)

Thus after introducing the value of -yp,(y') into (5-3a) a portion of

that integral will become after integration a known function of x

alone. We can now rewrite (5-3) as follows

TECHNICAL RESEARCH GROUP
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-t (x' )dx' a p2 Y(y' )dy'

f = (X- Xo) f i + f W (56a)x -x a, (x-xo) 2+(y)(

'yoa(x')dx' a2 -yi(y')dy'y a ) f D, (5-6b)-e (Xo:) 2 y a 1  "

E mploying the inversion formula (4-7) for the above two inLegral

equations with the Kutta condition applied at I for the appendage

and at a2 on the propeller, we have

1 a 2 ,/a ,

"r ay a, a2 y y -Y

- . yl (5- 7)

-C (xo-x)+(y')
z

YbaX) -1 V= ex /-Fs (s-xo)

a2 [ p~i(y)+-ip=(y) Idyl
a -, ds (5-8)

a1 (X-xo) +(Y')e

Breaking up the appendage vorticity- (x) into a-Y, (x) corres-

ponding to rp('Y),- and -;', (x) corresponding to -yp(y) we can

rewrite (5-8) as follows

TECHNICAL R:SEARCH GROUP
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~a 2

al ( ds (5-9)
-Y"a(x) -~ - f- S- a, (s-x0 ) 2+(y')

1 V__ a2  y (y)dy
o "- Ikx f -s 0 ) ds (5-10)
r f a, (S-xo) +(y')

Integrating first with respect to s we are confronted with the

following integral

I Sx ds

-f s-x (S-X) +y' (5-11)

This integral which reappears several times later on is solved in

general terms in the Appendix. The solution for the case of com-

plex conjugate roots of the quadratic (S-xo) 2+ y 2 is given by

Equ. (A-9). For our case

k1 = 0 - xo k2 M x Sl2 = xo t iy'

Thus

I =- Re 0 (5-1o2)+lY

(Xo. X)+yT, (Xo. )+iyr (5-12)

and

a2
oa )  Ref r- (x o -)-iy' pi(y ')dy ' (5-13)

TECHNIC+x a1  (XA-x)+iR 0

TECHNICAL RESEARCH GROUP
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/a2  (x0+t)+iy'

(x) l-x Re a (XX)+iy' ; o y , 'p=(y')dy' (5-14)
a x a ax 02

Evaluation of 'y,,(x)

o a .....

Introducing the value of -ypo,(y) as given in Equ. (5-5) into (5-I.4)

we have

a2

where b l 
= i(xo+,) b2 = i(xo-f) b = i(x0-X)

The integration of

a2  a-"; vr w d

12 y al (5-15

is performed in the Appendix and its solution in terms of elliptic

integrals is given by equ. (A-15) as

2(l+v) 1-p21 - .a3 (all-v) (a1 2-v)

( v(l-v) (a11 -a13) (l+a13 )

-all)K(k)+(1-v)(l-val3) f(G2 
$k) +

al3-v

7 ,k)] (5-16)

where K(k) is the complete elliptic integral of the Ist kind,
7(1 2,k) the complete elliptic integral of the second kind and

TECHNICAL RESEARCH GROUP
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l+allal
2 + l+allal

2 2-a . al 12

Yo i(x +1) Y -i(x -)
ll a12 - c

7 7
Yoi(Xo-X) k2  ("1-allv)(a 1 2 -I)

a 1 3 - .... -c " (all-v) (al 2 -v)

2
l_2a 2

(a13.v

The explicit expression for y''(x) then becomes

ro(X = I v(l. a13 )  V(all.V)(al2"v)I

r2 v(l'v) (all"-a1 3 ) (l+a 1 3 ) /7 2 ) (,,

+(1-)(l-va 1 3 ) I(V2Ik) + a13-v I k)J (5-17)

Evaluation of -y (y )

The expression for ypi(y) is given by Fqu. (5-7). Since
boa(X) is a function of x only we can rewrite it as follows:

a I-~;* I a2  a-
1 a2

TECHNICAL RS C G
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yo

Writing ----- the integral in y' reads

22y 0
C VCZ(Y- Y0)

with c,2 y " [o i(xo-x')]

We see that this integral is of the same form as (5-11) and its solu-

tion for complex conjugate roots is according to (A-9)

1 /(yo" )'i(Xo-x')

We thus have

"~ - 'Y V Ryi(x. )  Vai x., dx' (5-18)
-Yp 1Y ay R ~oa a- x-x

pii - 1  R e oa 2 -7x o -x'

Evaluation of -yoa(x)

Introducing now Equ. (5-18) into (5-14) we have for

Yoa(x) the following

2 2 1_xo+_)+_Y_ I _
y' () -X Re 1xo x0 +iy -) 4 - -oa(x) r , Re (xo-x)+iy, ry

10

S1 a,- xo-x
Re y-i(xo.X)I  Va 2-i(x° x') yoa(X,)dx'dy,

TECHNICAL RESEARCH GROUP
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Since Re Re -Re e ~ z + Re zji2 ) we have after multiplying

top and bottom by -i and writing Im zamRe(-iz).

oa V -x { J Fim~- Yoa W)

5:1a(x =2,, V' y'-(xo-x rrx dx

+a2 a+ -x f 2 y __

I F~ o, dv dx' (5-
Ya ' V V 0 -x W1~T 19)xox Y-(x~V

~~~y'~~ (x - - -I~ I , ~ x)boa 2 X {Ya~' a a. x yx I~(oa

YIixox J a 7+(Xo-x oaX)I X}

wIthbrvae om h bv ed

IamJ~*P2I
MR V l 0 xY

1Y'a()IxI a-~x-7 'o(li x

TECHN ICA REERH RU
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a 2  Va 2-Y: /77:77-71

b a. 7r:., Y'i(xo-xo 7a1 1o

By means of partial fractions Ia and Ib can be written as follows

1-? 2 -y ,V ___ /a:- y- 2I a* - al y 7-a= Y_ 2 _ U79 a, y-aI Y+g

11 1
bg lal - E- la2

a 2  V/1 ay2 /-a-;":-y f Y: d

Ibin~~~jJ V -a V -a.lj-

alj 'ag 1 Vj'

where b 1 -(' 0o+ L) b2 "i(x o - L)

b =i(xo-x) g =i(xo-x')

Integrals Ial , Ia2 and Ib2 are of the same form as the integrals

of ,qu. (5-15) and their solution is given by Equ. (A-15) with

14 2 [Yo+i(xo-x') ] replacing a13 in 1a2

a15 - [yo-i(xo-x')] replacing a13 in Ib2

We thus have
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2 (1+v) 1-li I' al
'al (a 1 v 1 2 -) j l 1 )K)+

(I- V) (1-va13) a 1 3 'v

' 2 (a 1 1- -v' 1 V (1-a11 v)KGC) +

ab2 -r (a,-va 1 2 V (- 1 yKk 7v

IT(,2,11 v(1-v) (a- a15 ) (1+at) , k)
(1-v) (1va1 5 j4 y + a, 4-v

Using these in the expressions for 
la and lb and then in Equ. (5-19), we

have for -y' x the following:

' (oax) Re(F

-a---v koa)+k T(P10kk)l2kdxl
a2 i(x,-x') x -x

a 1 iP2,' (It) -k

1- (xox YD(x') kT ldx'
a2 +i~x X..'-(2x0-x) ~~p~k± 2 I ~,~- 37~ ('Y ,)]

(5-20)
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or

y~~x - \IJx Re f i I 4a(x I)+-Y"ca(x')

1T2 0~x + x-(Z 0 -

+ K (k) kIt0+ jE

-1(6',k) -~k II(.y2k) xW-k~c dx' (5-21)

Functionally Equ. (5-21) can be written as

'Yoa(x) -~ [.Y7 Re -Yo'a(xC')] f(x',x)dx'

which is a non-thomogeneous integral equation in -y '(x) with -Y '(x)

given by Equ. (5-17).
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V1. SIMPLIFIED ANALYSIS - METHOD OF SUBSTITUTI"ON VORTICES

It Is apparent from the above that the rigorous approach

yields analytically unmanageable expressions, If at all feasible,

the abcve integral equations would have to be solved numerically

which because of the finite difference expressions and iteration

procedures in 'olved would -3pprecialbly affect the accuracy of the

results We s!q~d. there-fore use a different approach to the

problrt. which -1tthough. invcl~yirg certain initial simplificatiors

permits ')S tc obtain explicit analytical soluticns with an

accuracy perhaps higher than WOuld have resulted from a numerical

evaluatloi of the exacr- equations While bcth the appendage

and the prcp~ller are treated as finite length plates. with dis-

tributed vcrriciti':!i the effect that each of these, plates has

ci.. n reighbor is s~e tc te that of a concentrated vortex

whoso strength equal, the total. distrituted strength of the

rte!pect1,-E plate The Trethod cf ejaluating the unknown strengths

of the PrIopeliiEr a~d apreriage will b~ecome clear in the course

of the foflowing araly!?is

AS cxplained previously

the propeller experiences at T r+
infinity due to the crcssU.

flow U a -7orticity - Y)

gi'Vc-n Ey equation (4 9) As -,\)

the propellIer, approachee- the Pi__2MJ

appendage it begir%-s tc feel

Fig ' Representation of, x) by

a Loncentrated vortex r.
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the effect of yoa(x), zhus giving rise to an additional vorticity

-ypi(y). Referring to Fig. 6 we shall now concentrate the

distributed vorticity yoa (x) of the appendage at some location z a

and call it roa. Since 7p. cancels the effect of the uniform

stream U we have for the complex potential due to a concentrated

vortex roa and a distributed vorticity Ypi the following:

iroa a 2
w - = n(z-za) + -pi(Y') in(z-xo-iy')dy' (6-1)

a1

From this

dw iroa i a p 2 Y1Di ( y'),- Z= zza + Zr a (ZXo-iy,) my'

Applying the condition

u - 0 at x - x o  a, < y , a2

a 2 aa 2 YPi (Y ') (Y'Ya) - -

fa I Y-Y oa(x-x a ) + (yya)2

This integral equation according to (4-7) yields

-Y roa y 0 +~ y 2 S-y 0 a ds
r Vy - Y + fa JY +~ s (s-ya) 2+(Xo-xa) s-y
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The circulation is given by

a2  
a [2 Y a-(-yp. + -Ypi) dy - 2U F LO+- - d dy

"I "Iy y

Yo+  a - 2 SYo +  s ds

ir a Yo + 1 + s (S-ya)2+(x x) 2 y

Using the substitution - --... we have for the first right-hand

integral

.o 2 fl - i d = iUc (6-2)

For the second integral, integrating first with respect to y

ly -i 7--r3*y
C C 'o

this being a Cc-uchy princiidL value integral. Now since

a Re

,S-Y a)+(Xo-Xa/ s - [Ya+i(Xo-Xa)]

and writing =_s" u. p (Yo-Ya +i(xo-x a)

P . c

we have

' Re 'I'- (6-3)
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The solution to the above integral is given by (A-7) and thus

rpi - roa Re [I- V

The total circulation is thus

rop " rPO + rpi M

/(°'a c)+i(x°')- 1](4

" dUc + roa Re ( ,)+i(Xo. - (6-4)

To find yoa(x) we treat yop(y) as a concentrated vortex located at

some appropriate coordinate zp and write the complex potential as

due to rop and a distributed vorticity yoa(x) along the appendage.

We thus have
iroi .'

- -.7 in(z-x-iy + ri Yoa(x') in(z-x')dx'

iI

Figure 7.

Representation of op(Y) by a concentrated vortex Fop
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dw 1 + oa(x') d x '

z" 2 z-Xp- iyp r.

The condition of no normal velocity along the appendage requires

v - 0 on y - 0 - < x V

and thus

A y(x')dx' F (x-x P)
x _x (x-xp) 2+yp2

Again using Equ.(4-7) for this integral equation we obtain

A
to. P m-xv d

(X = 1 1 - ds . s- (6-5)
oa 7r R+ - (s-x)2+Y P2sX

Since

A
J, L f " ( x ) d x

-A

we can write

F - ---.~ f -F' ds
oa V pX -A I -s (s-x )+yz

pr p

flop r A- 0 d
-A (s-xP) +yP2

by partial fractions the above integral can be broken up into a

sum of two integrals of the form of 112 with their solution
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given by (A-6). Thus

I - r Re [1- ,

and

roa- rop Re [ Vx py -1] (6-6)

Solving from expressions (6-4) and (6-6) for rop and roa we obtain

r WrUc (67))
op 1-Re(A-)Re(B-1) (6-7)

ro W rUc 1-eAI)eBI

Fop 1U -Re (A-'I) e'- M (6-8)

where

A- % (Xp" )+'yp B- (o.ya+ c)+i(xo xa)
V (Yo-ya+ -')+(x-xa)

The method of determining Xp, yp, x. and ya,the coordinates of the

substitution vortices is given in detail in the Appendix. The

exact formulae for the four coordinates are given by equations

(B.15), (B.18), (B.20) and (6-8). It can be verified either

analytically or by sample calculations that Xp - x0 and Ya - 0 , i.e.

that the substitution vortices lie on the plates, the only variation

occurring along and not away from the appendage or propeller. We

can thus rewrite A and B as

- . a(y )+i(xox) (6-9)
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VII. EXPRESSIONS FOR THE UNSTEADY FORCES

a) The Quasi-steady Forces

According to equ. (3-1) the quasi-steady forces are

Foa = pUroa

Fop " pVIop

or

rFoa Re (7-1)-'I---=  -Re(A- I) Re(B- I) -1

1 l-Re(A-l)Re(B-1) (7-2)

where T = prcUV is the unperturbed propeller thrust. It will be

noticed from the above that

F Re(A-l) F (7-3)oa r op

Also
Foi Re(A- I) Re(B-1 (7-4=T I-Re(A-I) Re(B-I)(74

b) The Apparent-Mass Forces

As mentioned in Part III the determination of the apparent-

mass forces involves the evaluation of the moment-of-momentum

integrals namely
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2

Ma = Xoa(X) dx

and 2

M - y' op(y')dy'.

Ja

Using for yoa(x) the expression (6-5) we have

r r o dM 
s o

r 11-s (S-X )2+y 2 S-X
P p

The s integral above has been solved previously, equ. (A-1), thus

M - /Re ) (xai (Xp- 2)+yp .. )i
V p-0--7p p- p1+

Let us consider the above integ'al with zp x p +iyp

i p- x /+dx (7-5)

Breaking it up by means of partial fractions

in fdx +z '-2 x dx

and using for the first integral the substitution x = cos e and for
the second the solution given by equ. (A-7) we have

5-
i=2r + z p r (1- + (7-6)

Thus
M' =r' Re [ \/(x+iyp)-2 7 (x+iy ) (7-7)

op p pp
TECHNICAL RESEARCH GROUP
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For M using the expression for op we have

a2

M -2U f 2 (y-y ) dy

a1  Y+ -Y0

2a -y) 2 ALa - ds
f. (TY) f a 22
ay + -Y (s 'Y) +(x -xa)

Writing ffi we have
C

M =2U(E 1 "oa 2- 2T()f ffs
-12r a1  s-yo_

C

C22  2

2U() ( o[) - rs ]- f(s)ds

rU 2+ roa a2 Re ds
=- +-: )- (S-Yo) Re s-[ ['-i(Xo-Xa'

1-[ a- (x0 a.
S-Y

Using the substitution -- = we have for the integral

-l 'P' 2 " +(7-8)

where pt =
c

Thus _

M = U(C) 2 +1oaRe jCYo-Ya)+i(xo-xa)- C(Yo-ya)+i(xo-x a ) f C )

(7-9)
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The apparent mass forces are given by

F la -p M

F -p. p

Since =Yo -a= - V
0 0

Fla PV Ma

la 6y p

Since x = x and ya = Owe can rewrite the

normalized expressions for Fla and Flp as follows:

F la = -o Re[ (o+i)2- -(7 +iyp)] (7-10)

T 6y 0op o p

F Re o o a [ - - -c (7-11)
T fii y 0 op

In differentiating the above expressions it should be

kept in mind that these in addition to y0 contain yp and :as

themselves functions of y0 as given by equs. (B.18) to (B.20)

in Appendix B.
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c) The Wake Forces

As mentioned in part III the unsteady circulation on

both the appendage and propeller will cause the shedding of wake

vortices and these in turn will induce an additional circulation

round the two plates, For the appendage the circulation caused

by a single concentrated vortex located at some distance x along

the wake is by setting c - yp - 0, x. - x in equ. (6-7) given by

?Ja (x,o) - ( F_.-1i 1 -) (7-12)

Thus according to equs. (3-4) and (3-5) the integral

equation for the wake vorticity y( ) and the force induced by it

on the appendage are

1+R ;a(t)

1

I+R
F 2 - P" f (7-14)

Introducing the variable s, measured from the initial

position of the appendagels (l+R)-t we have for equ (7-13) by

writing u(s) - -y(l+R-s)

Figure 8 1+R

Coordinates of Wake Vorticity
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R d2sR-s r a
f pL(s R-s = (7-15)

This integral equation is difficult to solve, particularly in view
of the complexity of the expression for r . We shall obtain a

oa

solution to (7-15) for a unit impulse i.e. for r = 1 and then sum

the result by means of the Duhamel integral. For a unit impulse

equ. (7-15) reads

R (1) 2/R-s (7-16)
f(S) s 17

and thus the unit force produced by this unit impulse is

(1 +R (1) +-
F )  PU f dt (7-17)

where p(1) is the solution to (7-16).

According to Garrick 6 the value of the integral in

equ. (7-17) is within an accuracy of 2/ given by

1+R () ) 2

f (1R- C dC 4+R

and thus

Fl ) ,- ( unit circulation) (7-18)
2 4+R

The above is the force due to a unit impulse of magnitude

Soa=0 at t < 0 and Ta =1 for t 0. Using the Duhamel method of
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superposition for any arbitrary input 1' we haveoa

AF F (1) (t-T)tr (T) + r (0)F l) (t).
2 oa oa 2

dr
Since at two r -0 and Ar oa (T) - - d .

oaoa ,d d

F2a =- 2pU d (oa () d (7-19)
4 + j(t-r)

Integrating by parts

12it 1(t
F a _ _ __r_ _i r _ _)_ _ _ _2a a 4 + U4+t-) Ut-4) + 2

Writing

- T

F pTcU~ 2 - + 2 RFoaGd (20
2a = 2 oa - 2(7-20)

o (4+R-T) 3
or

rF2a rF oa) + 2f oa(T)d

T 2 (4+R-)

Eq. (7-20) tells us that the wake force is always equal

to - or minus one-half of the quasi steady force plits a
2 oa

correction C given by

R T (r) d
C = 2 o (4R) 2  (7-21)

In the above

o() =-rl-R (r) (A-1)Re(B-

where Yo = a-rR with 7 replacing R for purposes of integration.
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The constant a is the initial position of the propeller, later

on to be pushed to infinity, In this expression t-O implies

that the propeller is at yo - a as shown in Figure 9. In order

to have the propeller at y-O at t-0 we shall employ a new time

variable to be related to t by the expression

R= R + a
0 r

with Ut 0
R

Using this in (7-21) we have
R +_a
o r r()d

aaC -2 f _.(7-22)

0 4+o + r)

to 
0r

1 t~oo x
_,__ ~ a -_ = O-V

Figure 9

Time Coordinates for Propeller Position
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Direct integration of (7-22) is difficult since F (T)

in the numerator is a complicated function. However we can

represent r oa by a simpler function which by a suitable choice

of constants can be made to give a fair approximation to the

original expression.

rI in general has the shape of Figure 10 and we canoa

write

r oa(Y 2 (7-23)
(yo-Yom) +qa

where qa is a constant so chosen as to best approximate the

exact oa. Since for large yo Iop const, Foa rp Re'A-I)

which when expanded and restricted to terms no higher than ---

yields (for Y yo - C) Y
p 0 2

- 1
r X 2r o

oa= Yo 0

Figure 10.
Shape of r oa(yo)
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Thus for large yo we have qaram- xo and

- 1qa" ()

Introducing (7-23) and (7-22) and remembering that

yo a - r a"1"

0+ ( om ' i+r ) + qa

C 2 qai 'Fm (4+R+ 3) 2

0

To eliminate i from under the integral sign write

Yom-a+r=

and we have after letting a .

co

C - 2rqaram f d (7-24)(Yo'Yom) (r +qa)(k+C) . (-4

where k -4r-(5o-Yom
)

Breaking up (7-24') into partial fractions we have

2qar 00 2tdr 2  f 0
c k a { -ak + (k  q

(k+q) ++qa

+ (k +qa + 2k IaP (k)2P

where P - (50-50m) These integrations are easily performed

yielding
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-2 q a r ram (4r-P) 2+qa

C =) J ~(4r-P)tn .[ (4P) Zq a z

(4r- P) 2 5  -1 pa P (4r-P) 2+qa
4 (f- tan"I - ) + 4r (7-25)

Thus the force on the appendage due to the wake is

rF 2 a rFa (7-26)

For the propeller the effect of an arbitrary concentrated

vortex located at some (xy) is

rop = C o  R e ( 
- )c)+ i ( o X )

Shifting the origin to (xo,Yo) we obtain

rop = co Re (I

Figure 11.

Propeller Coordinates
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In accordance with our original assumption of V >> U

the shed vortices in the wake are assumed to lie essentially

along q-0; thus

(to) -c ( 1)

This is an expression similar to (7-12) and we can thus write

down the expression for the wake force as

F2p=pU() f (7-27)

where S = Vt
c/2

The treatment of (7-27) is the same as that of (7-14)

and thus

F p- F + 2Tp UVc S TOp ( ' ) d Xf
2 p op 0 0(4+s--)2

where and all quantities in r have been normalized by

c/2 instead of by 8, and

Yo= a'- T1.

Using S = So + a'la shift of variables to a new time

t o citilar to that illustrated in Figure 91we are now to evaluate

S +a' to (T')

D = o (4+-S +a (T') d'
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The shape of roP(y o ) as shown later on is of the form given in

Figure 12. ro r.

0 -

Figure 12.

Shape of rop(y o )

Thus rop p rPOD + rpi

and S +a',

F = 1 rPJC ~ i d
2p= . 2Fop + 2(4UVc 0 ( +a'-i)

0

S +a'

i Fop + 1 F + 2To UVc r Pi d-r
op (4+So+a'-T') 2

00

or s o+ $

0
T 2 opil J 2 (4+S°+a''i') 2

0

Thus since rpi is the only varying compoiLant of the
1

total circulation the wake force is equal to - - F pi plus a

correction term given by
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S%+a' r .

D - 2 f ')
o (4+S6+a' ") 2  dr' (7-28)

In the above

r t (y Re(A-) Re(B-1)
rpi 0o 1-Re(A- 1) Re(B- 1)

where for large values of y)F can be shown to vary as

0)picnbesontvays

T(i o- I)

yogo 
3

To eliminate a' from under the integral sign we write

and since - So =Yo

D = - 2
a' (4-y' +

Letting a' .-+oo we have

D 2 o P_ (7-2)

Y1 (4-y' 2
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VIII NUMERICAL EVALUATION OF FORCES

By summing the three component forces we have for the

resultant force on the appendage

rF s  rFoa 1 rFoaa a (---) + C

or

rFa  rFoa
T " 7 = ) + 1+ C (8-1)

This expression is implicitly dependent on r and is then a function

of four parameters 70, Xo, c and r. The total force on the propeller

is

or since Fop -Fp + Fpi -T + Fpi

RE -1.0 + z~ +~ + -f2+ D (8-2)

The force on the propeller due to neglecting second order effects

is independent of r.

Equations (8-1) and (8-2) were evaluated on an IBM 7090

digital computer using the expressions derived in Section VII.

Expression D as given by Eq. (7-29) was the only unevaluated integeral

and it has been integrated numerically using Simpson's rule. The

following discrete values of the involved parameters were used
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Yo from + 5.0 to -5.0 in intervals of 0.1

0, .1, .2, .3, .5

x ±1.6, +1.4, +1.2 + 1.05

r 2, 3, 4.

The values for both the component and total forces are available

in tabular form and the essential results of these calculations are

plotted in Figures 13 through 51. In these all forces are plotted

in terms of the unperturbed propeller thrust T )or F whereas all

distances and the propeller half-chord c/2 have been normalized by

the appendage half-chord 4.
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IX. DISCUSSION

The various expressions for the component and total forces

given in the preceding sections contain the propeller-appendage length

ratio E - c/21 as a parameter. When in these expressions we set E = 0,

the forces on both propeller and appendage disappear. However, in

spite of this disappearance, the dimensionless ratios F/T approach

definite non-zero limits as -- 0. The curves for the case E - 0

are therefore to be interpreted as plots of these limiting values.

These Z - 0 curves are,_, d identical with the curves of

Breslin who obtained the forces on the appendage by making the

simplifying assumption that the propeller has both a constant non-

zero circulation and zero chord.

In the discussion to follow we shall first describe the

effect of varying xo , r and E on the nature and magnitude of the

hydrodynamic forces and then draw some conclusions with regard to

optimum design features of propeller-appendage assemblies.

Rudder Position (+xL

Effects on Appendage - Figures 13 through 16 show sample plots

of the component forces indicating that while the apparent-mass forces

go up more than proportionately with c, the (,,' -i A ake

forces change less than proportionately with c. The complex way in

which these component forces make up the total force is shown in a

sample plot of " 17. Figs. 19 through 29 show the variations of the

total forces and these can be summarized as follows:
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a) The forces are predominantly positive, ice,, they act

in a direction opposite to propeller motion. Foc reasonable spacings,

o > 1.1, a minimum in the value of F a/T occurs around E z. 15 for

r - 2 and around E = .1 for r = 4.

b) The maximum force occurs before the propeller center passes

the appendage, 0 o< yore< i, with yom moving closer towards 0 with a

decrease in c.

c) After the propeller has passed the appendage the forces

are usually negative and negligible

d) The maximum forces decrease with an increase in propeller

velocity.Fam is reduced by about 257. in going from r = 2 to r = 4

e) As shown in Figs. 31 and 33 the forces go up drastically

with a decrease in xo . Fam increases 2-1/2 times in going from

x0 = 1.6 to x = 1o2.

Effects on Propeller

The apparent mass forces and also usually the wake force

go up, according to Figs. 35 through 37, more than proportionately

with c while the quasi steady forces go up less than proportionately

with F. Fig. 38 shows how the three component forces make up the

total force. It should be noticed that the line Fa/T I represents

the force on the propeller at infinity or the unperturbed thrust

Thus the plots in Figs. 40 to 45 in addition to the actual forces on

the propeller also represent the ratio of the actual force to that

without interference, The variation of the total force can be viewed

as a small or moderate perturbation round F Po / T = I and thus the

propeller force always acts in the same direction Fp is independent
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of r and its dependence on xo and E can be summarized as follows:

a) The effect of appendage interference is in general to yield

forces 1iss than the unperturbed propeller thrust. This reduction

increases with Z.

b) The propeller force reaches a minimum before it passes

the appendage in the region of 0 eYo d.6

c) A measurable maximum as shown in Fig. 47, is reached by

F only at R0 < 1-2.p 0

d) After the propeller has passed the appendage the forces

on it are slightly higher than the unperturbed thrust.

From an analytical point of view it is interesting

to note in Figures 49 and 51 the rather wide scatter of the coordinates

of the substitution vortices The value of xa even fails to approach

the expected quarter-chord position as y0  co

Skeg Position (-x0 )

Effects on Appendage - For the case where the propeller is

upstream of the appendage both the quasi-steady forces and the wake

forces increase more than proportionately with an increase in E.

However, the apparent mass forces exhibit a fairly complex behaviour,

The depressions occuring at o / 0 were unexpected and their

influence can be noticed in the shape of the total force as exemplified

in Fig. 18. From the succeeding plots of the total appendage force

for a skeg position the following general comments can be made.

a) Except for x -- 1, 2 the forces are predominantly negative

acting in the direction of propeller motion The ratio F a/T seems to
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increase with an increase in Z. Thus with an increase in propellec

chord the value of F a will increase both by virl u':e of an increase

in c as well as an increase in the coefficient Fa/T.

b) The maximum (negative) force occurs before the propeller

center passes the appendage and this occurs in the fairly narrow

range, .1o <.5.

c) After the propeller has passed the appendage the forces

are usually positive and negligible.

d) The maximum (negative) forces decrease iith an increasc

in propeller velocity.

e) The forces go up drastically with a decrease in i.

f) The peak forces for a skeg arrangement are quantitatively

about the same and of opposite sign as the peak forces .or a-

arrangement.

Effects on Propeller - The apparent mass forces go up less

than proportionately with an increase in j while the quasi-steady

and wake forces go up mor.e than linearly with c. From Figs. 40 to

45 the following emerges:

a) The effect of appendage interference is to increase the

propeller force above that of the unperturbed thrust.

b) As shown in Fig. 48b Fp reaches a maximum in the region

.3< 0 < 1.0

c) As shown in Fig. 47 the value of the maximum force

increases with a decrease in 3o and an increase in E.
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d) After the propeller has passed the appendage the forces

on it are slightly below the value uf the unperturbed thrust.

As shown in Fig. 50 the scatter of the substitution

vortices is here smaller than for the propeller-rudder arrangement and

for large values of 70 they approach the quarter-chord position on

both propeller and appendage.
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X. CONCLUSIONS

1. Spacing closer than o "11.21 between propeller and

appendage should be avoided for at least two reasons; at i. z 11.21

there are two cycles of stress reversals; and the peak forces become

excessive.

2. For a given propeller chord size c there exists an optimum

ratio T which will produce the smallest peak force on the appendage.

These values are 21 v 7c for low propeller speeds (r = 2); and 22 =lOc

for high propeller speeds (r = 4). The above, of course, applies to

the practical range of c values, 'l< T <.5 and excludes the case of

2 = 0 when the force on the appendage would be zero.

3. Peak forces cn both appendage and propeller always occur

before the propeller center passes the appendage; the forces are

negligible after the propeller has passed the appendage.

4 The peak forces on the appendage do not differ appreciably

for either skeg or rudder arrangement.

5. The peak forces on the propeller for a rudder arrangement

are essentially equal to the unperturbed thrust; for a skeg arrange-

ment they are measurably higher.

6. On the appendage the peak forces increase less than pro-

portionately with an increase in V; on the propeller they are pro-

portional to its velocity.
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APPENDIX A

EVALUATION OF INTEGRALS
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1. Solution of
L

+ q+k 1 dn (-1
I" - -il) n-T (A-i)

having a singularity at q - k2 . T1 and n2 are complex constants.

Writing
_+k 1 A B C

.....- --..... + .- -..+

(Tj'k2) (n'Tl) (T'T2) n'k2 I'nl q -%

we have

1k+k,

(k2-TIl) (k2-'12)

k +k2

(11 -T12 ) (il-k 2)

B- k 1 +T2

0 2-k 2) (T12-T,)

Thus the first integral of I becomes
L

ll dn (A-2)
A - -k2

This is a principal value integral whose value is T.

The second and third terms of 1, are of the form

TECHNICAL RESEARCH GROUP
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I1 fd (A-3)

with

p-a+ib a> .

Mltiplying top and bottom of (A-3) by tTP and writing

s =acos e a + ib

= +coso)d9 - (1- 1.--L )d9
12 J cose 0 P cose

or

112 = r + (1 - -) d9

oc ose

The problem is now to integrate the last integral rewritten as

113 . f d9 (A-4)
cose *k p

This integral can best be integrated in the complex plane by a

contour integration on the unit circle z - ei9 . In this
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notation we have
Cos@ z + z1z-1

Tz

and

(Il Z ) (A-5)

where

a) for +

z 1 -p + jp2-

z2  -p

with z I inside the unit circle.

b) for -p

zi p+ p 

z2=P"L~

wital %, inside W~e unit circle

Since the values o1 the residue for 1,3+ is 27ri and for
z l-Z

2

2ri we have
~1 3 - 2 Z

1 - (A-6)
13 cos + p i-

0
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Also

112 [V - (A-7)

In terms of our parameters

I12 -[ (1- / 121

and 11 becomes

I 2° I kl+k2  +1 - 122 (A-8)

If in addition n, and n2 are complex conjugates, then we have with-

in the brackets an expression of the form zli 2 - z2 and since

zjZ 2 -jEZ 2 i 2 Im z z 2

2,ri k1+TI 1 nl/ +l
1 1 aM -k ill.Z +1 (A-9)

T12lT2l-2

2. Solution of

2 y-a 1 (-0

1

where

a2 ' Yo + c/2

a, a Yo - c/2.
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Writing

we obtain for 12

-1

where

a 1  2 .i,+t)], a1 2  [yoi(Xo

a13 - Y (o

Multiplying top and bottom by ,(l-t) (all+C) and breaking up tae

numerator into partial fractions, we obtain for 12.
1 1

12 - + (l-a 1 +al 3 ) A+ [a a 3(1-a+a

-l -1

1

-1

121 + (l-a 1 1 +a1 3) 122 + [a 1 1-a 1 3 (l-al1+a13)] 123

where

p (HIC2 ) (aL +E) (a2+ )
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We shall now attempt to transform 12 into a function of elliptic

integrals by use of the following transformation

T- 12-0s0

(-vcoso)

where v is a constant to be determined in such a manner as to yield

for 121 , 122 , and 123 elliptic integrals.

Taking 122 first, we have

122 [(V2 -_) sinO/(l-vcosA) 2]dI
I1_., s -  2 co,-,V

(11+ .12-VC a +2 Vc -oJ-

cos#- U(a1 -vo)(al +  -co- (12v)cs

r 1-ajllY -al2v 1/2
so [(I + , coso)(l + - coso)]all-1, al12-v

The value of v now has to be chosen so as to make the coefficient

of coso in the denominator vanish; hence

1-a11v l-a12v
- + -. - 0

all1-V a.2-V

or
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1+a a + 2

1+ ( 1 12) - 1

all + a1 2  a11 + a 1 2

With this value of . ,)122 becomes

w

12 -1 )2 -do

(a222) (a12 I l ~ J ~ ( 2
01 12 a1- 12 Co2

By writing 0 - e + 7r/2 and realizing that we are dealing with an even
function the above integral is recognized as twice the complete

elliptic integral of the 1st kind, or

122 -2 (a 1 - K(k) (A- 12)
11l (a12" j))

with
=I-a )(a. 2 a) - 1)

(a11- -)) (a 1 2 -,))

For 1 21 we have

1 22 1r cos - do

21= l - ) 2 l- )cos( da

a11-i)( 12-i" o r

-) )0 (a

( cos0) 7(l-k cos 0 )

0
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(al ))(a 1 2 -~ K(k) + 1211

Multiplying top and bottom of 1211 by (1 + u coso)

1211 Cl (+ rOcosf)dO + , ~ cosi

1 (1-,2cos2 ) ~Vl+k cos (1- )2cos 2 ) V '1-kos0
0
0

The first of the above integrals is twice the complete elliptic

integral of the 3rd kind. The second integral being odd in 0 is

zero. Thus

1211 - 2 ?T( a2 k)
and

121 2)(a_____1 2 - 3 _ -K(k) + (1- 7 2) fl'(2,k)] (A-13)

Considering next 123

123 1-2 2 - a 3  diF a 1 1 (a-- 7 ') ) .. jo,- V 0-oo
o 1- i Cosl

1 12  [l3+ca-1

(all- a) ) (a12- &)) (a13-2))

)(a13-0)) di +

1- 2 l3 6 - os

0
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+ [ + V( 1 3-v) d1a
f (I + 8os1 7 f -k, i osZ ,

0 a13 -vc

M.ultiplying the second integral top and bottom by

1-va1
13-v

S1- 1 2v(a, -v)
123 (a1 1 .v,',a1 2 -v) a3v -a 13v

+ 3 V2 ( 1-va3  cos) d O

+13- Jo [1- (a13.) I
or since the second part of the second integral is zero

W 2 (-vK(k) + -2,k)] (A-14)23 13 (a --v (a 1 2 -) k)13

with p l-va 3 2

-(13.v

The total expression for 12 is then
I2W 2 (1+v) / .1y

2 (1va3)av

(1-a11v) K(k) + (l-v)(1-va1 3) f v(2 ,k)

v(l-v)(a 1 1 -a 1 3) (1-a 1 3 ) (02,k)

+al 3-v ff I~k~ (A-15)

This being a solution of integral (A-10) in terms of complete elliptic

integrals of the 1st and 3rd kind.

TECHNICAL RESEARCH GROUP



APPENDIX B

SUBSTITUTION VORTEX FOR AEROFOIL IN FIELD OF ANOTHER VORTEX.
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l.

Figure B. I

Let there be a vortex of strength (circulation) rp

at zp, Suppose the flow associated with the vortex in the pre-

sence of the aerofoil (a flat plate) has circulation ra around

the latter. We seek the location, za, of that vortex by which

the aerofoil may be replaced, such that the flow at sufficiently

large z due to the two vortices approximates the original flow.

More precisely, za is to be so determined that the flow due to

the two vortices agrees with the original flow to terms of order

The configuration in question is shown in Figure B.1,

where it will be seen that we have chosen the appendage as the

aerofoil which is to be replaced by a vortex. By a treatment

entirely analogous to the one we shall describe, the propeller

may be similarly replaced, but it will suffice to explain the
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method with reference to the appendage and merely quote the results

for the propeller.

Let w, be the complex potential of the flow associated

with the two vortices. Then

B.1) w 1 - y rOPp og(z-Z p) + 7 roa Log(z-z a)

Expanding the second term in inverse powers of z, we

have
ji .a

B.2) w ir, tog(z-z ) + ir ag -i zaz+z4
1

where the remainder is a power series in - convergent for

IZl>IZaI

Now denote by w2 the potential of the actual flow

induced by the vortex located at z in the presence of the aero-

foil. We first express w2 as a function of C, where C is defined

by the transformation

.3) z + 4

In the C plane the aerofoil is mapped into a circle

of radius 4 with center at C - 0. The vortex at zp maps into a

vortex at p with circulation Ful Likewise the circulation roa

around the aerofoil is preserved.
(7)

Using Milne-Thompson's circle theorem in the C plane,

we get
ir Fo  2 t ro

B.4) w2 - ,P)og( -.p)- 2  Log +-) _f og
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where t is the image of z and the bar over a letter stands for

the complex conjugate.

We now express w2 as a function of z in the following

form:
ir

(B°5) w2 -1 0eog(Z-Zp) + f(z)

where f(z) is a function analytic outside the circle z - I.

We then expand f(z) in inverse powers of z as far as the term.z
To this end, we invert the relationship (B.3) to obtain

(B. 7) C ?+-

where the sign of the square root is such that Cz as Izl. -.

We then have

(B.8) C-- z + c'

(B.9) -1+ 0()

The remainder terms in (B,8) and (B.9) are power series

in I which converge for I2.1>1.z
We also have

(3.10) CIin..72+7 Vz=- - -P711

It is readily shown that the right side of (B.10) can

be expanded to give the following result:
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(B.l1) - (z-z )(l + + 1 + 1)

Substituting from Equations (B.8) through (B.11)

into (B.4), we got

(B.12) w2 - log [(z-z )(l + I + +
w2.r 1( z )zp z

- ;-opIog 1-1p (I ' + o(-)

+F log [z(lz + o( ))
4z z

We expand the right side of (B.12) as far as terms
in 1 and obtain, after neglecting an irrelevant constant

ir iroa
(3.13) w2 - O tog(Z-Zp) +V. 8 fogz

+ op 1 + 1) + o(-)
p z o

where the remainder is a power series convergent for Jzj> 1.

Comparison of (B.13) with (B.2) to terms of order
II now gives

(3.14) i-'4 #-J - + n 2  roza
p

from which follows
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(B.15) Za +

Equation (B.15) expresses the location of the vortex

replacing the appendage in terms of z (since tp is related to zp

by (B.7)), and OY, the ratio of the propeller circulation to the
roa

circulation around the appendage. It is important to note that

since rp and ra are real, (B.15) shows that za is real and that

therefore the substitution vortex for the appendage lies on the

appendage regardless of the location z of the other vortex, It

is likewise true that the substitution vortex for the propeller

lies on the propeller. r

To determine -P in (B.15), we apply the Kutta condition
roa

at the trailing edge of the appendage, i.e., at z - £. The trail-

ing edge maps into the point - in the C plane so that the Kutta

condition can be written as

dw2 .
(B.16) -o, 0 -

where w2 is given by (B.4)

Carrying out thp differnntiation we obtain
2

dw2  ir 4 +roa 1

(B17 TC T t + +p 2V

Application 6f (B.16) yields

r

(B.18) .oa 2 1 +

NL- rS GROUP
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which when combined with (B.15) gives

1 1

(B.19) Za D

Equation (B.19) is the desired explicit relationship

between za, the location of the appendage vortex, and zp, the

location of an arbitrary "exciting" vortex. By way of checking

this result, we observe that as zp (and therefore C ) 0 a,

z a* - 4 , the point on the appendage distant 1 chord from the

leading edge. This is to be expected since the incident flow

approaches a uniform stream as z p -* 0)and for a uniform incident

stream at any angle of attack other than zero, the substitution

vortex replacing a thin aerofoil is known(?) to be located at

the 1 chord point. An exception arises if r p in a direction

parallel to the y axis, in which case the substitution vortex

position depends on Xp, the distance from the y axis to the

straight line along which zp + C. The reason for this is that

two limiting operations are not interchangeable, v. z., allowing

Zp to * c in an arbitrary direction on the one hand, and allowing

that direction to approach perpendicularity to the appendage on

the other. If the latter operation is performed first, the

result miglit be expected to be anomalous since in this case the

limiting uniform stream impinges on the appendage with a zero

angle of attack and therefore induces no circulation,
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To determine the position of the substitution vortex

for the propeller, we proceed in a manner exactly analogous to

the above, except that we uust remember that the incident flow

on the propeller comes not only from a vortex at z a but also from

a uniform stream traveling with velocity U in the positive x direc-

tion. With this minor modification we get the following expression

for zp, the location of the substitution vortex that replaces

the propeller:

(3.20) U tp2 Irc 2 Fop al

where to - x0 + iyo, the position of the center of the propeller,

c is the propeller chord, and a is defined by

(B.21) a  i (Za-z o + (Za-7 o2+-) ]

Thus Equation (B.20) is the analogue of Equation (B.15)

in that it expresses zp in terms of za, V', roa&and rop. Note that

since the last two terms on the right of (B.20) are imaginary,

*p lies on the propeller.

By application of the Kutta condition at the trailing

edge of the propeller, we could derive an equation analogous to

(B.14). Such an equation, combined with Equations (B.15), (B.18)

(or B.19), and (1.20) would give four equations for the determination

of the four unknowns, Fop Foazp, and za . However, we already
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have a fourth equation, viz,, Equation (6-8) for r Pin the main

text of the report, this having been derived in an independent

way which also invokes the Kutta condition at the trailing edge

of the propeller. Thus, no further relationships are required.

One final remark should be made concerning a limita-

tion on the use of the substitution vortex method,, To terms of

order ., the potential due to the presence of the appendage is

equal to that due to the appendage vortex, but this equality

holds only for observation points z for which lzi, i.e,, obser-

vation points exterior to a circle centered on the appendage and

having a radius equal to the half chord. Similarly, the potential

due to the propeller is approximated by that of the propeller

vortex for points outside a corresponding circle centered on the

propeller. It follows that in treating the flow with both aero-

foils present by the substitution v.:rtex method, neither aerofoil

should penetrate the circle associated with the other This re-

quirement imposes a restriction on the variables j, c, and xo, viz.,

(B.22) xo > I + or 2 / 2 (E o1)2

Thus the method breaks down if tne propeller passes

too close to the end of the appendage On the other hand, it

seems likely that a slight penetration of the circles by the aero-

foils will not seriously spoil the accuracy of the method so that

practically speaking, the inequality (B,22) is a little too

restrictive.
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